Description: Towards Optimal Point Cloud Processing for 3D Reconstruction by Guoxiang Zhang, YangQuan Chen Estimated delivery 3-12 business days Format Paperback Condition Brand New Description This SpringerBrief presents novel methods of approaching challenging problems in the reconstruction of accurate 3D models and serves as an introduction for further 3D reconstruction methods. Publisher Description This SpringerBrief presents novel methods of approaching challenging problems in the reconstruction of accurate 3D models and serves as an introduction for further 3D reconstruction methods. It develops a 3D reconstruction system that produces accurate results by cascading multiple novel loop detection, sifting, and optimization methods.The authors offer a fast point cloud registration method that utilizes optimized randomness in random sample consensus for surface loop detection. The text also proposes two methods for surface-loop sifting. One is supported by a sparse-feature-based optimization graph. This graph is more robust to different scan patterns than earlier methods and can cope with tracking failure and recovery. The other is an offline algorithm that can sift loop detections based on their impact on loop optimization results and which is enabled by a dense map posterior metric for 3D reconstruction and mapping performance evaluation works without any costly ground-truth data.The methods presented in Towards Optimal Point Cloud Processing for 3D Reconstruction will be of assistance to researchers developing 3D modelling methods and to workers in the wide variety of fields that exploit such technology including metrology, geological animation and mass customization in smart manufacturing. Author Biography Dr. Guoxiang Zhang completed his Ph.D. program at University of California Merced in Spring 2021. His research interests are in 3D point cloud processing, semantic mapping with applications in cave exploration drones and autonomous driving systems. The loop-detection method he invented has the top performance on several real world datasets. His work on more informed RANSAC won the best presentation award from the 2020 ICCMA conference. His foundational code contributions in Julia for 3D reconstruction application are being widely used.Dr. YangQuan Chen is now a full professor at the School of Engineering, University of California, Merced. He was on faculty of Electrical and Computer Engineering Dept. of Utah State University, Logan, Utah from 2000 to 2012 where he was a tenured associate professor and the Director for the Center for Self-Organizing and Intelligent Systems (CSOIS) from 2004-2012. Dr. Chen published many books, papers and patents. He served as theGeneral Co-Chair for ICUAS 2014 and 2017, 2019 (International Conference on Unmanned Aircraft Systems), and was on the editorial board for journals like IEEE Transaction on Control Systems Technology, ISA Transactions, IFAC journals of Control Engineering Practice, ASME Journal of Dynamics Systems, Measurement and Control. He serves as associate editor for IFAC Mechatronics, Fractional Calculus and Applied Analysis, and Nonlinear Dynamics, as well as again ASME Journal of Dynamics Systems, Measurement and Control. He is now serving as the Topical Editor-in-Chief (Field Robotics) on International Journal of Advanced Robotics Systems (IJARS) and Intelligent Service Robotics. His Publon H-index is 63 with more than 17.1k citations, GoogleScholar citation is 39.7k with H-index 88, H10-index 512. Prof. Chen was selected in the 2018, 2019, 2020 Highly Cited Researchers List by Clarivate. Details ISBN 3030961095 ISBN-13 9783030961091 Title Towards Optimal Point Cloud Processing for 3D Reconstruction Author Guoxiang Zhang, YangQuan Chen Format Paperback Year 2022 Pages 87 Edition 1st Publisher Springer Nature Switzerland AG GE_Item_ID:137941361; About Us Grand Eagle Retail is the ideal place for all your shopping needs! With fast shipping, low prices, friendly service and over 1,000,000 in stock items - you're bound to find what you want, at a price you'll love! Shipping & Delivery Times Shipping is FREE to any address in USA. Please view eBay estimated delivery times at the top of the listing. Deliveries are made by either USPS or Courier. We are unable to deliver faster than stated. International deliveries will take 1-6 weeks. NOTE: We are unable to offer combined shipping for multiple items purchased. This is because our items are shipped from different locations. Returns If you wish to return an item, please consult our Returns Policy as below: Please contact Customer Services and request "Return Authorisation" before you send your item back to us. Unauthorised returns will not be accepted. Returns must be postmarked within 4 business days of authorisation and must be in resellable condition. Returns are shipped at the customer's risk. We cannot take responsibility for items which are lost or damaged in transit. For purchases where a shipping charge was paid, there will be no refund of the original shipping charge. Additional Questions If you have any questions please feel free to Contact Us. Categories Baby Books Electronics Fashion Games Health & Beauty Home, Garden & Pets Movies Music Sports & Outdoors Toys
Price: 71.92 USD
Location: Fairfield, Ohio
End Time: 2024-12-20T16:05:59.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Restocking Fee: No
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 30 Days
Refund will be given as: Money Back
ISBN-13: 9783030961091
Type: NA
Publication Name: NA
Book Title: Towards Optimal Point Cloud Processing for 3d Reconstruction
Number of Pages: Xix, 87 Pages
Language: English
Publisher: Springer International Publishing A&G
Topic: Engineering (General), Signals & Signal Processing, Intelligence (Ai) & Semantics, Probability & Statistics / General
Publication Year: 2022
Illustrator: Yes
Genre: Mathematics, Computers, Technology & Engineering
Item Weight: 6.3 Oz
Author: Guoxiang Zhang, Yangquan Chen
Item Length: 9.3 in
Item Width: 6.1 in
Book Series: Springerbriefs in Electrical and Computer Engineering Ser.
Format: Trade Paperback