Description: Recurrent Neural Networks by Fathi M. Salem Estimated delivery 3-12 business days Format Hardcover Condition Brand New Description This textbook provides a compact but comprehensive treatment that provides analytical and design steps to recurrent neural networks from scratch. Publisher Description This textbook provides a compact but comprehensive treatment that provides analytical and design steps to recurrent neural networks from scratch. It provides a treatment of the general recurrent neural networks with principled methods for training that render the (generalized) backpropagation through time (BPTT). This author focuses on the basics and nuances of recurrent neural networks, providing technical and principled treatment of the subject, with a view toward using coding and deep learning computational frameworks, e.g., Python and Tensorflow-Keras. Recurrent neural networks are treated holistically from simple to gated architectures, adopting the technical machinery of adaptive non-convex optimization with dynamic constraints to leverage its systematic power in organizing the learning and training processes. This permits the flow of concepts and techniques that provide grounded support for design and training choices. The authors approach enables strategic co-trainingof output layers, using supervised learning, and hidden layers, using unsupervised learning, to generate more efficient internal representations and accuracy performance. As a result, readers will be enabled to create designs tailoring proficient procedures for recurrent neural networks in their targeted applications. Author Biography Dr. Salems current research interests include: Neural Networks and Learning Systems, Blind Signal Deconvolution and Extraction, Dynamical Systems and Chaos, Integrated CMOS Sensing and Processing. He was the Chairman of the IEEE Technical Committee on Real-Time Control Computing and Signal Processing (1994–1996). He was the Chairman of the CAS Technical Committee on Neural Systems and Their Applications (1997–1998). He served on the IEEE Neural Network Council (1999–2000), and was the first Vice President of the IEEE Neural Network Council for Technical Activities (1999–2001). He was the Guest Co-Editor of the IEEE-CAS Special Issue on Bifurcations and Chaos in Circuits and Systems July 1988 (with T. Matsumoto), the Special Issue on Micro-Electronic Hardware Implementation of Soft Computing: Neural and Fuzzy Networks with Learning, Journal of Computers and Electrical Engineering, July 1999 (with T. Yamakawa), and the Special Issue on Digital and Analog Arrays, in the Journal of Circuits, Systems, and Computers, August 1999 (with M. Ahmadi). He was the recipient of the IEEE CAS Golden Jubilee Award (1999), the IEEE Third Millennium Award (2000), and The CAS Darlington Best Paper Award (2001).With a team of students, he also received the U.S. Semiconductor Research Corporation (SRC) Phase II Finalist Award (2000). He was a Distinguished Lecturer of the IEEE CAS Society in 2000–2001. He was an Associate Editor and Guest Editor for numerous IEEE and other transactions including the IEEE Circuits and Systems, IEEE Neural Networks, the Journal of Circuits, Systems, and Computers, and the Journal of Computer and Electrical Engineering. He was the Chairman of the Engineering Foundation Conference on Qualitative Methods for Nonlinear Dynamics. He served in several capacities in several conferences including the General Chair of the IEEE Midwest Symposium on Circuits and Systems in Lansing, MI, in 2000 and also in 2021. He was a Visiting Professor at UC, Berkeley (1983), the California Institute of Technology, Pasadena (1992), and the University of Minnesota, Twin Cities (1993). He joined MSU in 1985 and has been a Professor since1991. He has worked and consulted for several companies including General Motors, Ford, Smiths Industries, Intersignal, IC Tech Inc., and Clarity LLC. He has authored more than 250 technical papers, and co-edited the textbook (Dynamical Systems Approaches to Nonlinear Problems in Circuits and Systems, (SIAM, 1988). He is a co-inventor of more than 14 patents on adaptive nonlinear signal processing, neural networks, and sensors. Details ISBN 3030899284 ISBN-13 9783030899288 Title Recurrent Neural Networks Author Fathi M. Salem Format Hardcover Year 2022 Pages 121 Edition 1st Publisher Springer Nature Switzerland AG GE_Item_ID:137718607; About Us Grand Eagle Retail is the ideal place for all your shopping needs! With fast shipping, low prices, friendly service and over 1,000,000 in stock items - you're bound to find what you want, at a price you'll love! Shipping & Delivery Times Shipping is FREE to any address in USA. Please view eBay estimated delivery times at the top of the listing. Deliveries are made by either USPS or Courier. We are unable to deliver faster than stated. International deliveries will take 1-6 weeks. NOTE: We are unable to offer combined shipping for multiple items purchased. This is because our items are shipped from different locations. Returns If you wish to return an item, please consult our Returns Policy as below: Please contact Customer Services and request "Return Authorisation" before you send your item back to us. Unauthorised returns will not be accepted. Returns must be postmarked within 4 business days of authorisation and must be in resellable condition. Returns are shipped at the customer's risk. We cannot take responsibility for items which are lost or damaged in transit. For purchases where a shipping charge was paid, there will be no refund of the original shipping charge. Additional Questions If you have any questions please feel free to Contact Us. Categories Baby Books Electronics Fashion Games Health & Beauty Home, Garden & Pets Movies Music Sports & Outdoors Toys
Price: 72.1 USD
Location: Fairfield, Ohio
End Time: 2024-11-21T04:53:39.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Restocking Fee: No
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 30 Days
Refund will be given as: Money Back
ISBN-13: 9783030899288
Book Title: Recurrent Neural Networks
Number of Pages: Xx, 121 Pages
Language: English
Publication Name: Recurrent Neural Networks : from Simple to Gated Architectures
Publisher: Springer International Publishing A&G
Subject: Signals & Signal Processing, Electronics / Circuits / General, General, Databases / Data Mining
Publication Year: 2022
Item Weight: 13.7 Oz
Type: Textbook
Subject Area: Mathematics, Computers, Technology & Engineering
Author: Fathi M. Salem
Item Length: 9.3 in
Item Width: 6.1 in
Format: Hardcover