Description: Principles of Locally Conformally Khler Geometry by Liviu Ornea, Misha Verbitsky Estimated delivery 3-12 business days Format Hardcover Condition Brand New Description This monograph introduces readers to locally conformally Kähler (LCK) geometry and provides an extensive overview of the most current results. A rapidly developing area in complex geometry dealing with non-Kähler manifolds, LCK geometry has strong links to many other areas of mathematics, including algebraic geometry, topology, and complex analysis. The authors emphasize these connections to create a unified and rigorous treatment of the subject suitable for both students and researchers.Part I builds the necessary foundations for those approaching LCK geometry for the first time with full, mostly self-contained proofs and also covers material often omitted from textbooks, such as contact and Sasakian geometry, orbifolds, Ehresmann connections, and foliation theory. More advanced topics are then treated in Part II, including non-Kähler elliptic surfaces, cohomology of holomorphic vector bundles on Hopf manifolds, Kuranishi and TeichmÜller spaces for LCK manifolds with potential, and harmonic forms on Sasakian and Vaisman manifolds. Each chapter in Parts I and II begins with motivation and historic context for the topics explored and includes numerous exercises for further exploration of important topics.Part III surveys the current research on LCK geometry, describing advances on topics such as automorphism groups on LCK manifolds, twisted Hamiltonian actions and LCK reduction, Einstein-Weyl manifolds and the Futaki invariant, and LCK geometry on nilmanifolds and on solvmanifolds. New proofs of many results are given using the methods developed earlier in the text. The text then concludes with a chapter that gathers over 100 open problems, with context and remarks provided where possible, to inspire future research. Details ISBN 3031581199 ISBN-13 9783031581199 Title Principles of Locally Conformally Khler Geometry Author Liviu Ornea, Misha Verbitsky Format Hardcover Year 2024 Pages 736 Publisher Birkhauser Verlag AG GE_Item_ID:160125124; About Us Grand Eagle Retail is the ideal place for all your shopping needs! With fast shipping, low prices, friendly service and over 1,000,000 in stock items - you're bound to find what you want, at a price you'll love! Shipping & Delivery Times Shipping is FREE to any address in USA. Please view eBay estimated delivery times at the top of the listing. Deliveries are made by either USPS or Courier. We are unable to deliver faster than stated. International deliveries will take 1-6 weeks. NOTE: We are unable to offer combined shipping for multiple items purchased. This is because our items are shipped from different locations. Returns If you wish to return an item, please consult our Returns Policy as below: Please contact Customer Services and request "Return Authorisation" before you send your item back to us. Unauthorised returns will not be accepted. Returns must be postmarked within 4 business days of authorisation and must be in resellable condition. Returns are shipped at the customer's risk. We cannot take responsibility for items which are lost or damaged in transit. For purchases where a shipping charge was paid, there will be no refund of the original shipping charge. Additional Questions If you have any questions please feel free to Contact Us. Categories Baby Books Electronics Fashion Games Health & Beauty Home, Garden & Pets Movies Music Sports & Outdoors Toys
Price: 223.19 USD
Location: Fairfield, Ohio
End Time: 2024-11-09T03:23:51.000Z
Shipping Cost: 0 USD
Product Images
Item Specifics
Restocking Fee: No
Return shipping will be paid by: Buyer
All returns accepted: Returns Accepted
Item must be returned within: 30 Days
Refund will be given as: Money Back
ISBN-13: 9783031581199
Book Title: Principles of Locally Conformally Khler Geometry
Number of Pages: Xxi, 736 Pages
Publication Name: Principles of Locally Conformally Kähler Geometry
Language: English
Publisher: Springer Basel A&G
Publication Year: 2024
Subject: Geometry / Differential, General, Geometry / Algebraic, Mathematical Analysis
Type: Textbook
Subject Area: Mathematics
Item Length: 9.3 in
Author: Misha Verbitsky, Liviu Ornea
Item Width: 6.1 in
Series: Progress in Mathematics Ser.
Format: Hardcover