Cardinal

Optimal Control Theory for Infinite Dimensional Systems by Xungjing Li (English)

Description: Optimal Control Theory for Infinite Dimensional Systems by Xungjing Li, Jiongmin Yong In particular, we are interested in the case where the state equation is one of the following types: partial differential equation, functional differential equation, integro-differential equation, or abstract evolution equation. FORMAT Paperback LANGUAGE English CONDITION Brand New Publisher Description Infinite dimensional systems can be used to describe many phenomena in the real world. As is well known, heat conduction, properties of elastic­ plastic material, fluid dynamics, diffusion-reaction processes, etc., all lie within this area. The object that we are studying (temperature, displace­ ment, concentration, velocity, etc.) is usually referred to as the state. We are interested in the case where the state satisfies proper differential equa­ tions that are derived from certain physical laws, such as Newtons law, Fouriers law etc. The space in which the state exists is called the state space, and the equation that the state satisfies is called the state equation. By an infinite dimensional system we mean one whose corresponding state space is infinite dimensional. In particular, we are interested in the case where the state equation is one of the following types: partial differential equation, functional differential equation, integro-differential equation, or abstract evolution equation. The case in which the state equation is being a stochastic differential equation is also an infinite dimensional problem, but we will not discuss such a case in this book. Notes Springer Book Archives Table of Contents 1. Control Problems in Infinite Dimensions.- §1. Diffusion Problems.- §2. Vibration Problems.- §3. Population Dynamics.- §4. Fluid Dynamics.- §5. Free Boundary Problems.- Remarks.- 2. Mathematical Preliminaries.- §1. Elements in Functional Analysis.- §1.1. Spaces.- §1.2. Linear operators.- §1.3. Linear functional and dual spaces.- §1.4. Adjoint operators.- §1.5. Spectral theory.- §1.6. Compact operators.- §2. Some Geometric Aspects of Banach Spaces.- §2.1. Convex sets.- §2.2. Convexity of Banach spaces.- §3. Banach Space Valued Functions.- §3.1. Measurability and integrability.- §3.2. Continuity and differentiability.- §4. Theory of Co Semigroups.- §4.1. Unbounded operators.- §4.2. Co semigroups.- §4.3. Special types of Co semigroups.- §4.4. Examples.- §5. Evolution Equations.- §5.1. Solutions.- §5.2. Semilinear equations.- §5.3. Variation of constants formula.- §6. Elliptic Partial Differential Equations.- §6.1. Sobolev spaces.- §6.2. Linear elliptic equations.- §6.3. Semilinear elliptic equations.- Remarks.- 3. Existence Theory of Optimal Controls.- §1. Souslin Space.- §1.1. Polish space.- §1.2. Souslin space.- §1.3. Capacity and capacitability.- §2. Multifunctions and Selection Theorems.- §2.1. Continuity.- §2.2. Measurability.- §2.3. Measurable selection theorems.- §3. Evolution Systems with Compact Semigroups.- §4. Existence of Feasible Pairs and Optimal Pairs.- §4.1. Cesari property.- §4.2. Existence theorems.- §5. Second Order Evolution Systems.- §5.1. Formulation of the problem.- §5.2. Existence of optimal controls.- §6. Elliptic Partial Differential Equations and Variational Inequalities.- Remarks.- 4. Necessary Conditions for Optimal Controls — Abstract Evolution Equations.- §1. Formulation of the Problem.-§2. Ekeland Variational Principle.- §3. Other Preliminary Results.- §3.1. Finite codimensionality.- §3.2. Preliminaries for spike perturbation.- §3.3. The distance function.- §4. Proof of the Maximum Principle.- §5. Applications.- Remarks.- 5. Necessary Conditions for Optimal Controls — Elliptic Partial Differential Equations.- §1. Semilinear Elliptic Equations.- §1.1. Optimal control problem and the maximum principle.- §1.2. The state coastraints.- §2. Variation along Feasible Pairs.- §3. Proof of the Maximum Principle.- §4. Variational Inequalities.- §4.1. Stability of the optimal cost.- §4.2. Approximate control problems.- §4.3. Maximum principle and its proof.- §5. Quasilinear Equations.- §5.1. The state equation and the optimal control problem.- §5.2. The maximum principle.- §6. Minimax Control Problem.- §6.1. Statement of the problem.- §6.2. Regularization of the cost functional.- §6.3. Necessary conditions for optimal controls.- §7. Bounary Control Problems.- §7.1. Formulation of the problem.- §7.2. Strong stability and the qualified maximum principle.- §7.3. Neumann problem with measure data.- §7.4. Exact penalization and a proof of the maximum principle.- Remarks.- 6. Dynamic Programming Method for Evolution Systems.- §1. Optimality Principle and Hamilton-Jacobi-Bellman Equations.- §2. Properties of the Value Functions.- §2.1. Continuity.- §2.2. B-continuity.- §2.3. Semi-concavity.- §3. Viscosity Solutions.- §4. Uniqueness of Viscosity Solutions.- §4.1. A perturbed optimization lemma.- §4.2. The Hilbert space X?.- §4.3. A uniqueness theorem.- §5. Relation to Maximum Principle and Optimal Synthesis.- §6. Infinite Horizon Problems.- Remarks.- 7. Controllability and Time Optimal Control.- §1. Definitions ofControllability.- §2. Controllability for linear systems.- §2.1. Approximate controllability.- §2.2. Exact controllability.- §3. Approximate controllability for semilinear systems.- §4. Time Optimal Control — Semilinear Systems.- §4.1. Necessary conditions for time optimal pairs.- §4.2. The minimum time function.- §5. Time Optimal Control — Linear Systems.- §5.1. Convexity of the reachable set.- §5.2. Encounter of moving sets.- §5.3. Time optimal control.- Remarks.- 8. Optimal Switching and Impulse Controls.- §1. Switching and Impulse Controls.- §2. Preliminary Results.- §3. Properties of the Value Function.- §4. Optimality Principle and the HJB Equation.- §5. Construction of an Optimal Control.- §6. Approximation of the Control Problem.- §7. Viscosity Solutions.- §8. Problem in Finite Horizon.- Remarks.- 9. Linear Quadratic Optimal Control Problems.- §1. Formulation of the Problem.- §1.1. Examples of unbounded control problems.- §1.2. The LQ problem.- §2. Well-posedness and Solvability.- §3. State Feedback Control.- §3.1. Two-point boundary value problem.- §3.2. The Problem (LQ)t.- §3.3. A Fredholm integral equation.- §3.4. State feedback representation of optimal controls.- §4. Riccati Integral Equation.- §5. Problem in Infinite Horizon.- §5.1. Reduction of the problem.- §5.2. Well-posedness and solvability.- §5.3. Algebraic Riccati equation.- §5.4. The positive real lemma.- §5.5. Feedback stabilization.- §5.6. Fredholm integral equation and Riccati integral equation.- Remarks.- References. Review "This book goes plenty of new ways, which should be interesting also for the expert on this topic...this book is an excellent matured presentation of the modern subject Optimal processes being also very clearly arranged in its typography." --ZAA Promotional Springer Book Archives Long Description Infinite dimensional systems can be used to describe many phenomena in the real world. As is well known, heat conduction, properties of elastic Review Quote "This book goes plenty of new ways, which should be interesting also for the expert on this topic...this book is an excellent matured presentation of the modern subject Optimal processes being also very clearly arranged in its typography." Details ISBN146128712X Author Jiongmin Yong Short Title OPTIMAL CONTROL THEORY FOR INF Series Systems & Control: Foundations & Applications Language English ISBN-10 146128712X ISBN-13 9781461287124 Media Book Format Paperback Edition 94199th Year 2011 Publication Date 2011-09-30 Imprint Springer-Verlag New York Inc. Place of Publication New York Country of Publication United States DEWEY 519 Pages 450 Illustrations XII, 450 p. AU Release Date 2011-09-30 NZ Release Date 2011-09-30 US Release Date 2011-09-30 UK Release Date 2011-09-30 Publisher Springer-Verlag New York Inc. Edition Description Softcover reprint of the original 1st ed. 1995 Alternative 9780817637224 Audience Professional & Vocational We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:96318224;

Price: 315.84 AUD

Location: Melbourne

End Time: 2025-01-06T14:03:38.000Z

Shipping Cost: 12.87 AUD

Product Images

Optimal Control Theory for Infinite Dimensional Systems by Xungjing Li (English)

Item Specifics

Restocking fee: No

Return shipping will be paid by: Buyer

Returns Accepted: Returns Accepted

Item must be returned within: 30 Days

ISBN-13: 9781461287124

Book Title: Optimal Control Theory for Infinite Dimensional Systems

Number of Pages: 450 Pages

Language: English

Publication Name: Optimal Control Theory for Infinite Dimensional Systems

Publisher: Springer-Verlag New York Inc.

Publication Year: 2011

Subject: Computer Science, Mathematics

Item Height: 235 mm

Item Weight: 703 g

Type: Textbook

Author: Xungjing Li, Jiongmin Yong

Item Width: 155 mm

Format: Paperback

Recommended

Discover Your Optimal Health: The Guide to Taking Control of Your Weight,...
Discover Your Optimal Health: The Guide to Taking Control of Your Weight,...

$5.31

View Details
Optimal Control Problems Related to the RobinsonSolowSrinivasan Model by Alexand
Optimal Control Problems Related to the RobinsonSolowSrinivasan Model by Alexand

$175.83

View Details
Optimal Control for Chemical Engineers, Hardcover by Upreti, Simant Ranjan, L...
Optimal Control for Chemical Engineers, Hardcover by Upreti, Simant Ranjan, L...

$309.98

View Details
Optimal Control: An Introduction
Optimal Control: An Introduction

$57.64

View Details
Optimal Control, Hardcover by Lewis, Frank L.; Vrabie, Draguna L.; Syrmos, Va...
Optimal Control, Hardcover by Lewis, Frank L.; Vrabie, Draguna L.; Syrmos, Va...

$124.99

View Details
CALCULUS OF VARIATIONS and OPTIMAL CONTROL THEORY, M.R. Hestenes, 1966
CALCULUS OF VARIATIONS and OPTIMAL CONTROL THEORY, M.R. Hestenes, 1966

$23.00

View Details
Calculus of Variations and Optimal Control Theory: A Concise Introduction HC
Calculus of Variations and Optimal Control Theory: A Concise Introduction HC

$67.99

View Details
Optimal Control and Estimation - Robert F. Stengel New
Optimal Control and Estimation - Robert F. Stengel New

$19.00

View Details
Genuine C2 Optimal Plaque Control Toothbrush Head for Philips Sonicare HX9024/10
Genuine C2 Optimal Plaque Control Toothbrush Head for Philips Sonicare HX9024/10

$16.99

View Details
Discover Your Optimal Health: The Guide to Taking Control of Your Weight, Your V
Discover Your Optimal Health: The Guide to Taking Control of Your Weight, Your V

$3.81

View Details